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THOMAS-FERMI MODELLING OF ATOMS IN 
COLD DENSE PLASMAS 

N. H. MARCH 

Theoretical Chemistry Department, University of Oxford, 5 South Parks Road, Oxford, 
OX1  3UB, England. 

[ Received 12 Sepremher. 1989) 

The dimensionless Thomas-Fermi equation for isolated atoms is first generalized to apply to atoms in cold 
dense plasmas. The form of the potential distribution for an atom in an electron liquid, such as exists in the 
conduction band of a molten metal, is then characterized by the ratio s = p0h/Ze2 of the chemical potential 
p,, of the plasma to a characteristic energy Ze2/h of the Thomas-Fermi atom with nuclear charge Ze, b being 
a length proportional to Z-’’3. A WKB approach to the bound-state level spectrum E,, for the atom in the 
plasma is presented and some qualitative deductions made. Finally, such potential distributions, scaling 
with the parameter s, plus the pair correlation function g ( r ) ,  yield an approximate partition function and 
electronic density of states of a liquid metal. 

KEY WORDS: WKB levels, partition function, liquid metals. 

1. INTRODUCTION 

Following the experiments of Flynn and co-workers’,’ on rare gas atoms implanted 
in the alkali metals Li through to Cs, it has been pointed out3 that the optically 
measured threshold energies for Kr and for Xe vary linearly with the mean 
interelectronic spacing r,  through the alkali series. In ref. 3 it was stressed that such 
simple behaviour supported the utility of the concept of an atom in a cold dense 
plasma and in the present work attention is focussed on modelling such atoms using 
the Thomas-Fermi (TF) approximation. 

However, before embarking on such a programme, it is important to comment on 
the range of validity to be anticipated for such results. To do so, consider specifically 
the binding energy formula for heavy atoms as a function of atomic number Z: 

(1.1) 

Here the leading term is the TF r e ~ u l t , ~  the term of O(Z2)  is due to density gradient 
corrections5q6 while the last term exhibited in eqn. (1.1) is largely from e ~ c h a n g e . ~  
Correlation is expected to enter the formula (1.1) at O(Z). If one requires, say, that the 
TF approximation be accurate to - 1 %, then one would require Z1/3  - 100. Thus, 
one should apply the theory to ‘superheavy elements’. Needless to say, relativistic 
considerations should then enter, but in the present work one will suppose that the 
predictions of the non-relativistic Schrodinger equation are the focus of the discus- 
sion, even though there is recent progress relating to relativistic TF Also, 

E/(e2/ao) = -O.77Z7I3 + $Z2 - 0.27Z5/3 + . . . 
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15R N. H. MARCH 

the potential distribution for isolated atoms given by the T F  approximation is known 
to be widely useful in the range of the Periodic Table, so this aspect will be emphasized 
especially in the present work on atoms in cold dense plasmas. For some further 
relevant background, the article by Moreg may be consulted. 

The outline of the present paper is then as follows. In section 2, the TF  
approximation is used to show that the potential distribution V(r) created by 
embedding a nuclear charge Ze in a plasma of chemical potential p o  can be 
characterized by a generalization of the dimensionless T F  equation for neutral atoms 
to take account of the non-zero value of the dimensionless ratio s = pob/Zez of the 
chemical potential to Ze2/b, a characteristic energy of the T F  isolated atom, with b its 
characteristic length 

Section 3 then sets out the way the WKB method can be used to calculate both 
bound-state eigenvalues and some continuum properties of such T F  potentials: some 
contact being made with known isolated atom results. 

Then in section 4, because of the usefulness of such potentials as a starting point for 
electronic structure calculations on liquid metals, a method due to Hilton et al.," is 
briefly summarized for computing the canonical or Bloch density matrix in terms of 
an effective potential V(r, j?, s) derivable from the T F  potentials discussed in section 2. 
The first-order approximation U ,  to U is shown to scale simply when the TF  
potential for an atom in a plasma is taken as starting point. The resultant effective 
potential determines, together with the pair correlation function g(r), the partition 
function, and hence the electronic density of states, of the liquid metal.'' Section 5 
constitutes a summary, together with suggestions for further work. 

2.  GENERALIZATION O F  DIMENSIONLESS TF EQUATION 
TO TREAT ATOMS IN COLD DENSE PLASMAS 

The basic density-potential relation of the T F  method is given by 

8n 
3h 

n(r) = ( 2 m ) 3 / 2 ( p  - V(r)3/2 

where n(r)  is the electron density, V(r) the one-body potential energy and p the 
chemical potential. The Poisson equation for the electrostatic potential X(r) = 
-V(r)/e, created by a charge Ze embedded in an initially uniform cold plasma, 
namely 

Vzx = 4n[n+ - n(r)]e, (2.2) 
8n 
3h3 

where n ,  = - ( 2 m ) 3 / 2 p 3 / 2 ,  then can be rewritten with the substitution 

ZeZ 
r 

(p - V) = -4(x): r = bx, 
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ATOMS IN COLD DENSE PLASMAS 159 

where b is given by eqn (1.2) in the form 

S 3 i 2 X  
d 2 4  - d3/' 
d x 2  xl" 

where s is the ratio p/(Ze2/b); p being a characteristic (Fermi) energy of the cold 
plasma and (Ze2/b) an appropriate energy scale for the isolated T F  atom. 

Since the chemical potential p is identically zero for the isolated TF atom, this is 
included, in fact, in eqn (2.4) corresponding to the limit s = 0. However, in the present 
work we are concerned with the form of the solutions of eqn (2.4) satisfying the 
boundary conditions 

4 ( x  = 0) = 1; 4 ( x  -+ 00) = s (x) .  (2.5) 
The first of these conditions (2.5) follows immediately from eqn (2.3) since V +  - 
Ze2/r as r - 0  with nuclear charge Ze at the origin of coordinates. Since, in a 
conducting medium, Ze is perfectly screened at large distances, it is also clear from 
eqn (2.3) plus the definition of s that (+/x) + s  as Y -  co, which completes the 
discussion of the boundary conditions (2.5). 

Though the focus of the present work is on solutions of eqn (2.4) satisfying the 
conditions (2.5) well away from s = 0, it seemed of interest to depict in Fig. 1 the 
relation of the isolated atom solution at s = 0 to that for an atom in a cold dense 
plasma for finite s, these solutions corresponding to curves 1 and 2 in Fig. 1 .  

2.1 

Let us next exhibit the way in which curve 2 of Fig. 1 .  approaches its asymptote sx  by 
writing 

where evidently, for s # 0; A << sx for sufficiently large x .  The non-linear term 43'2 in 
eqn (2.4) can then be written as s3/'x3/* + 3 s 1 / 2 x 1 / 2 A  + O(A2), and hence at large x 
one has 

Asymptotic behaviour of $(x, s )  satisfying e4ns (2.4) and (2.5) 

$ = s x + A  (2.6) 

(2.7) 

the solution tending to zero at infinity being evidently 

A ( X ,  s) = n(s) exp( - A s i / 4 x ) .  (2.8) 

Clearly the amplitude n(s) in eqn (2.8) must be determined by matching the 
asymptotic form of eqn (2.8) on to the small x expansion of eqn (2.4) given in 
Appendix 1 .  

Fortunately, information about n(s) can be extracted from early numerical sol- 
utions of Alfred and March." These workers show that the screened potential V ( r )  
has the large r form 

(2.9) 
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\ 

X 

Figure 2 
atom. Curve 2 s # 0. Atom in plasma 

Shows nature of solutions of eqn (2.4) with boundary conditions (2 .5) .  Curve 1 s = 0. Isolated 

where q -  is the usual T F  screening length given by 

(2.10) 

with k, the Fermi wave number. These workers solved eqns (2.1) and (2.2) with p 
calculated from the mean conduction electron density of Cu metal, for the cases Z = 1 
to 4. The values of c1 thereby obtained are recorded in Table 2.1. 

Also recorded in Table 2.1 is the constancy of the quantity ( 1  - cc)/Z”* noted by 
Alfred and March.I2 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



ATOMS IN COLD DENSE PLASMAS 161 

Table 2.1 
Z = 1 - 4 in Cu metal 

Values of a in eqn (2.9) for charges 

z 1 2 3 4 

a 0.77 0.67 0.60 0.55 
( 1  - u)/Z”’ 0.23 0.23 0.23 0.22(5) 

In view of the scaling with s made clear in eqn (2.4), this constancy can be translated 
into the form for a(s) in eqn (2.8): 

u(s) = 1 - 
const 
~ + O(s- 1’2) s3/8 

where the constant is determined from the equation 

(2.1 1) 

(2.12) 

using the value of p for Cu metal and the constant 0.23 from Table 2.1. It must be 
emphasized, of course, that eqn (2.1 1) must only be used when the term proportional 
to is small compared with unity; it must not be used near the neutral atom limit 
s + 0. 

In modelling the potential distribution for atoms in cold dense plasmas, a simple, 
though obviously approximate representation of the screened potential V(r) can be 
written as 

(2.13) 

This form has been chosen to interpolate between the correct TF asymptotic 
behaviour (2.9) and the r + 0 limit in which V ( r )  + - Ze2/r. It is not claimed that eqn 
(2.13) gives an accurate quantitative fit of the numerical solutions of Alfred and 
March,12 but it does reflect (i) the general form of the potential distribution and (ii) 
the scaling with s reflected in eqn (2.4). Some discussion of the eigenvalue spectrum of 
V(r) in eqn (2.13) is given in section 3 below. 

3 EIGENVALUE SPECTRUM FOR ATOMS IN DENSE PLASMAS 

Senatore and March13 have examined the eigenvalue spectrum E , ~  for the isolated TF 
atom, using the solution of eqn (2.4) with s = 0, plus the boundary conditions (2.5) at 
s = 0. This was done by using the WKB method, evaluated then by expansion to 
lowest order in Z - ’ l 3 .  One result which emerged was the value of the atomic number, 
Z ,  say, for the first appearance of a given 1. Their condition reads; 

(3.1) Z ,  2 0.15641(21 + 1 ) 3  
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I62 N. H. MARCH 

which was quite similar to a condition derived differently by Abraham~on, ’~  which 
differs from the inequality (3.1) only by replacing the numerical factor by 1/6. 

Since Abrahamson’s result was derived starting from an effective potential energy 

with the usual factor 1(1 + 1) in the centrifugal potential energy term replaced by its 
WKB equivalent ( I  + f)’, by requiring that for an electron to be bound there must 
exist a region where Veff is negative, we take this inequality thereby derived from eqn 
(3.2): 

- ( Y ’ V ) ~ ~ ~  2 fe’a,(l + 4)’ (3.3) 

as a simple starting point for the discussion of an atom in a cold plasma. 

inequality (3.3) one readily finds the maximum is at r ,  such that 
Taking first the form (2.9), valid at large r,  and evaluating (r2V)maK to insert in the 

qr,  = 1 (3.4) 
which when re-inserted in eqn (2.9) yields 

Z,e’q-’a(s,)exp(- 1) 2 Qeza,(21 + 1)’. s1 = p b / Z , e ’ .  

Z ,  2 Qqa, exp(l)(21+ 1)’. 

(3.5) 

In the large s limit, where ct = 1 from eqn (2.1), this yields immediately 

(3.6) 

A presumably more accurate treatment is set out in Appendix 2, based on the forms 
(2.13) and (2.1 1). 

For a fuller study of the WKB eigenvalues enI ,  one can follow Senatore and 
MarchI3 and write 

I”’ (3.7) n(s* + 1) = Z”j  jl:2dx[2C- 4 k  s) - (1 - 2 - 2 ’ 3  + f)’ + EsllC’Z-4/3 
X X’ 

where b in eqn (12) has been written as Ca,/Z’/3. In eqn (3.7) the integers* is related 
to the usual quantum number n by 

n = s * + 1 + 1 ,  (3.8) 
while x1 and x2 denote the classical turning points of the motion in dimensionless 
units, the energy being in Rydbergs. 

Eqn (3.7) is a concrete demonstration of the qualitative assertion now being made 
that each plasma, characterized by p in eqn (2.1), generates its own Periodic Table, the 
behaviour of isolated atoms (with large Z) following from the case s = 0 studied in 
detail by Senatore and March.13 

When further solutions of the generalization (2.4) of the dimensionless T F  equation 
for isolated atoms become available for larger Z than in the study of Alfred and 
March” (their results can be used at larger Z ,  in fact, but at  the price of greatly 
increased chemical potential p to keep s unchanged) it will be a relatively straightfor- 
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ATOMS IN COLD DENSE PLASMAS I63 

ward matter to map out quantitatively the WKB eigenvalue spectrum E , ~  for a chosen 
plasma, as a function of atomic number Z, and thus to investigate the (usually 
different) Periodic Table for the plasma. In this connection the work of Green, Sellin 
and Zachor" is highly relevant for the potential (2.13) and its eigenvalues, without 
invoking the WKB approximation. 

4. LIQUID METALS BUILT U P  FROM ATOMS IN A COLD PLASMA 

Having discussed an individual atom in a plasma, let us now turn to the use of such an 
atom as a building block for treating liquid metals. Such a treatment was, in fact, set 
up by Rousseau, Stoddart and March,'' based on the one-centre calculations of 
Hilton, March and Curtis," who started from the potential distribution of Alfred and 
MarchI2 for Z = 4 in a Cu metal conduction electron density. 

The first step in this method is to calculate the so-called effective potential U ( r g ) ,  
which determines the diagonal element of the Bloch or canonical density matrix, say 
C ( r ,  8) through 

To first order in the potential V ( r ) ,  U is given by 

U l ( r ,  /I. Z, s )  = %(r,  r', f l )  - 4 -, s dr' j ( z:) (rr ) 
where 9 was given explicity in ref. 10 as 

(4.2) 

Evidently, the scaling properties of the potential distributions obtained by solution of 
eqn (2.4) lead to simplifications in this first-order approximation to the effective 
potential U(rg). In the next step, the density matrix C, corresponding to this 
first-order U ,  is orthogonalized to the lowest bound state," which has to be directly 
calculated. Hence, by iteration, U(rp) is obtained for a given starting potential 

4.1 

The assumption customarily made in the liquid metal problem is that the total 
potential energy V ( r )  to be inserted in the Schrodinger equation for a given fixed 
configuration of ions ( R i ]  is the superposition of atomic-like localized potentials u(r) 
centred on ( R i ) ,  i.e. 

Liquid metal partition function and electronic density of states 

V(r) = u(lr - R i l ) .  
R ,  

(4.4) 
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I 64 N. H. MARCH 

The TF approximation to C(rg)  in the liquid metal is then 

In the method of ref. 11, one simply replaces in eqn (4.5) the potential u(r) by U(r ,  p) 
for the atom in a plasma, calculated as above. 

Once U(r ,  p)  is known, the partition function Z(p) = jC(r,  P)dr can be calculated, 
albeit approximately, once one has the liquid pair function g(r). In brief, the result 
may be expressed in the form 

where 

(4.7) 

,fdenoting the Mayer-like function 

f ( r ,  8) = expC - p W - 9  PI1 - 1. (4.8) 

Finally G(r’) is given explicitly in terms off and the pair function g(r) of the liquid 
metal by 

G(r’) = dr”f(r”p)g( lr’ - r”1). (4.9) s 
Hence, knowledge of the U(r ,  p) for an individual atom in a cold plasma having a 
density equal to that in the conduction band of the specified liquid metal, together 
with the liquid pair function g(r), suffices to yield the partition function Z(p) of the 
liquid metal, the electronic density of states following by inverse Laplace transform.’ ’ 

5 SUMMARY 

The main result of the present work is to show that the potential distribution around 
an atom in a cold dense plasma can be modelled in the Thomas-Fermi regime by the 
generalized non-linear differential equation (2.4), to be solved with the boundary 
conditions (2.5). The fact that the solution for the potential can be characterized by 
the single parameter s has implications for the eigenvalue spectrum of an atom in a 
plasma, as well as for the electronic structure of liquid metals, which can be built from 
quantitative knowledge of an atom in the plasma formed by the conduction electrons, 
plus the short-range atomic order in the liquid metals, described by the experimentally 
accessible pair function g(r). 

Clearly, a further worthwhile step would be to generate, for a wider range of the 
parameter s than is hitherto available, solutions of the non-linear equation (2.4). With 
such solutions available, the eigenvalues E , ~  in the WKB approximation should be 
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readily calculable from eqn (3.7). A further use of such solutions would be to yield the 
first-order approximation U ,  (rp) to the effective potential U(rg) for an atom in a cold 
dense plasma from eqns (4.2) and (4.3), to provide the first step in a more extensive 
study than made hitherto of the electronic structure of liquid metals. 
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APPENDIX 1 

Power series solution of generalized TF eqn (2.4) for small x 

It was already known to Baker16 that the small x series solution of eqn (2.4) for the 

#J(x) = 1 + u2x + U3X.3/2 + u4x2 + u5x5’2 + ‘ .  . (Al.l)  

The purpose of this Appendix is to generalize Baker’s coefficients to apply to arbitrary 
s. To do so, eqn (Al . l )  suggests the substitutions x1I2 -+ y, #J(x) + ~ ( y ) .  Then eqn (2.4) 
is readily rewritten as 

particular case s = 0 had the form 

(A1.2) 
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166 N. H. MARCH 

Table A l . l  
values of the parameters in Eqn. (2.4) 

Coefficients in Eqn. ( A l . l )  for arbitrary 

4 2 1 s3/2 3 2 
~ 0 ja2 
3 3 6 ?%a' Isa2 

a9 a10 a11 

2 a: P2 a: 31 a 2 F  a: 
27 252 63 175 1 4 8 5 a 2 - 1 9 8 + 1 0 5 6  

- ~ 

a1 2 a13 

Using the form (Al. l ) ,  the left-hand side of eqn (A1.2) is 

d2X dX * 
y- - -=  c n(n - 2)an y" - 

dy2 dy n = 3  
(A1.3) 

while 

4y2~3i2 - 4s3"y5 = 4y2 + 6a,y4 + [ 6 ~ 3  - 4 ~ ~ ' ~ ] y ~  

+ [$a: + 6a4]y6 + [3U2U3 + 6a5]y7 

+ [ -a:/4 + $a: + 6U6]y8 

+.. .  (A1.4) 

Equating coefficients of powers of y" in eqns (A1.3) and (A1.4) yields the results 
recorded in Table A 1.1. These reduce correctly to the results for s = 0 given earlier by 
the writer,17 who calculated additional terms, and made one correction, to the results 
of Baker16 already referred to. 

APPENDIX 2 

Consequences of scaling property of generalized Thomas-Fermi potential for the first- 
order effective potential U ,  in eqn (4.2) 

Introducing the quantity A defined by eqn (2.6), namely 

A 4 1  = - -  
sx sx 

(A2.1) 
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the effective potential U to first-order in the TF potential can be written 

Here the Green function G is given by 

Thus one has 

(A2.2) 

(A2.3) 

(A2.4) 

where 

F(x ,  b 2 / p )  = n-’ SI--exp( 1 - 2b2 - Ix - x ’ 1 2 ) A d x l .  (A2.5) 
x - x“ P 

or finally 

(A2.6) 

Of course, it is not implied that such a simple scaling will be preserved in higher order 
approximations to the effective potential U .  
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